Abstract

Evaporation of the microlayer underlying a bubble during nucleate boiling heat transfer is experimentally investigated by boiling dichloromethane (methylene chloride) on an oxide coated glass surface using laser interferometry and high speed photography. The influence of system pressure (51.5 kN/m2—101.3 kN/m2) and heat flux (17 k W/m2—65 kW/m2) upon the active site density, frequency of bubble emission, bubble departure radius and the volume of the microlayer evaporated have been studied. The results of the present investigation indicate that the microlayer evaporation phenomenon is a significant heat transfer mechanism, especially at low pressure, since up to 40 percent of the total heat transport is accounted for by microlayer evaporation. This contribution to the overall heat transfer decreases with increasing system pressure and decreasing heat flux. The results obtained were used to support the model propounded by Hwang and Judd for predicting boiling heat flux incorporating microlayer evaporation, natural convection and transient thermal conduction mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.