Abstract

This experimental research focuses on the impacts of submerged synthetic jets on a fully-developed turbulent boundary layer (TBL) under a drag reduction working case. Two-dimensional velocity vectors in the flow field are captured with the aid of a particle image velocimetry (PIV) system. Proper orthogonal decomposition (POD) analyses provide evidence that synthetic jets notably attenuate the induction effect of prograde vortex on the low-speed fluid in large-scale fluctuation velocity field, thereby weakening the bursting process of near-wall turbulent events. Furthermore, the introduced perturbance redistributes the turbulent kinetic energy (TKE) and concentrates the TKE onto small-scale coherent structures. Modal time coefficients in various orders of POD are divided into components of multiple frequency bands by virtue of complementary ensemble empirical mode decomposition (CEEMD). It is found that the turbulence signals are shifted from low-frequency to high-frequency bands thanks to synthetic jets, thus revealing the relationship between scales and frequency bands. One further method of scale decomposition is proposed, that is, the large-scale fluctuating flow field will be obtained after removing the high-frequency noise data with the help of continuous mean square error (CMSE) criterion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call