Abstract
The aqueous-phase hydrogenolysis of glycerol was studied in Ni/CeO2 catalytic systems prepared by incipient wetness impregnation. The operating conditions were 34 bar, 227 ºC, 5 wt.% of glycerol, and a W/mglycerol = 20 g catalyst min/g glycerol without a hydrogen supply. The effect of the catalyst preparation conditions on the catalytic activity and physicochemical properties of the catalysts was assessed, particularly the calcination temperature of the support, the calcination temperature of the catalyst, and the Ni content. The physicochemical properties of the catalysts were determined by N2 adsorption, H2-TPR, NH3-TPD, and XRD, among other techniques. A relevant increase in acidity was observed when increasing the nickel content up to 20 wt.%. The increase in the calcination temperatures of the supports and catalysts showed a detrimental effect on the specific surface area and acid properties of the catalysts, which were crucial to the selectivity of the reaction. These catalysts notably enhanced the yield of liquid products, achieving global glycerol conversion values ranging from 17.1 to 29.0% and carbon yield to liquids ranging from 12.6 to 24.0%. Acetol and 1,2-propanediol were the most abundant products obtained in the liquid stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.