Abstract

AbstractContractional deformation in the outer parts of fold‐and‐thrust belts is in part controlled by the presence of syntectonic sediments and multiple décollements (e.g., the Apennines, the Appalachians, the Pyrenees, the Zagros, or the Sub‐Andean and Kuqa fold‐and‐thrust belts). To better understand the influence of these parameters in the kinematic evolution of fold‐and‐thrust systems, we carried out an experimental study including four 3‐D sandbox models inspired by one of the previously mentioned prototypes, the Kuqa fold‐and‐thrust belt. This belt contains two décollements: a weak synorogenic salt layer and a deeper, preorogenic, and frictionless décollement (i.e., organic‐rich shales) showing along strike variations of rheology. The experimental results show that increasing synkinematic sedimentation rate (i) generates a progressive change from distributed to localized deformation and (ii) delays the development of frontal contractional structures detached on the salt, favoring the formation and reactivation of more hinterland thrusts and backthrusts. With respect to the rheology, our study reveals that as the viscosity of the prekinematic décollement increases, (i) the deformation propagates more slowly toward the foreland, and (ii) the underlying thrust stack becomes broader and lower and has a gentler thrust taper angle. The rheology of the prekinematic décollement defines the distribution and geometry of the structures detached on it that in turn influence the development of overlying, salt‐detached structures. Subsalt structures can (i) determine the areal extent of the salt and therefore of any fold‐and‐thrust system detached on it and (ii) hamper or even prevent the progressive foreland propagation of deformation above the salt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.