Abstract

AbstractThe thermal degradation of two polyhedral oligomeric silsesquioxane/polystyrene (POSS/PS) nanocomposites of formula R8(SiO1.5)8 POSS/PS and R′1R7(SiO1.5)8 POSS/PS (where R′ = Phenyl and R = Cyclopentyl), at 5% of POSS concentration, was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Compounds were prepared by the polymerization of styrene in the presence of POSS. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the obtained thermogravimetric (TG) curves were discussed and interpreted. The initial decomposition temperature (Ti), the temperature at 5% mass loss (T5%), the glass transition temperature (Tg), and the activation energy (Ea) of degradation of nanocomposites were determined and compared with each other and with those of unfilled PS. The Ti, T5%, and degradation Ea values of nanocomposites were higher than those of neat PS, thus indicating a better heat resistance and lower degradation rate, and then a better overall thermal stability. The use of POSS with a symmetric structure, in the synthesis of PS based nanocomposite, showed a decrease of Tg value not only in respect to asymmetric POSS/PS nanocomposite but also in respect to neat polymer, thus suggesting an influence of filler structure in the thermal properties of the materials. POLYM. COMPOS., 33:1903–1910, 2012. © 2012 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.