Abstract

Fully compensated ferrimagnets do not create any magnetic stray field and allow for a completely polarized current of charges. As a result, these alloys show promising prospects for applications as spintronic devices. In this paper, we investigated the phase stability, the site preference, the tetragonal distortion and the influence of symmetry from the crystal structure and chemical environments of magnetic ions on the magnetic properties of Cr2YZ and Mn2YZ (Y = void, Ni, Cu, and Zn; Z = Ga, Ge, and As) full Heusler alloys by first-principles calculations. We found that the selected Cr2-based alloys, except for Cr2NiGa and Cr2NiGe, prefer to crystallize in the centrosymmetric L21-type structure, while the selected Mn2-based alloys, except for Mn2CuAs, Mn2ZnGe and Mn2ZnAs, tend to crystallize in the non-centrosymmetric XA-type structure. Due to the symmetry, the antiferromagnetism of the selected L21-type alloys is very stable, and no spin-polarized density of states could be generated. In contrast, the magnetic moment of the selected XA-type alloys depends heavily on the number of valence electrons and tetragonal distortion, and spin-polarized density of states is generated. Therefore, the selected alloys with L21-type structures and their tetragonal-distorted structure are potential candidates for conventional antiferromagnets, while those with XA-type structure and their tetragonal-distorted structure are promising candidates for (fully) compensated ferrimagnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.