Abstract

Magnetic fluid is a kind of colloidal material with tunable microstructure and unique optical properties. The tunable magneto-optical modulation property of magnetic fluid under externally switchable magnetic field with various modulation periods is investigated theoretically and experimentally. The transitional modulation period (lower limit of the working frequency) between the square-like and oscillation-like modulation is achieved and found to be magnetic-field- and sample-concentration-dependent. The modulation mechanism is analyzed and ascribed to the dynamic microstructure of magnetic fluid under different modulation periods of external magnetic fields. The result of this work may be helpful for the pragmatic applications of magnetic fluid based on the square-like modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.