Abstract

This study gives an overview of available literature on flow patterns such as swirl, tumble and squish in internal combustion engines and their impacts of turbulence enhancement, combustion efficiency and emission reduction. Characteristics of in-cylinder flows are summarized. Different design approaches to generate these flows such as directed ports, helical ports, valve shrouding and masking, modifying piston surface, flow blockages and vanes are described. How turbulence produced by swirl, tumble and squish flows are discussed. Effects of the organized flows on combustion parameters and exhaust emission are outlined. This review reveals that the recent investigations on the swirl, tumble and squish flows are generally related to improving in-cylinder turbulence. Thus, more experimental and numerical studies including the impacts of this organized flows on turbulence production, combustion behavior and pollutant formation inside the cylinder are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.