Abstract

This paper presents the results of an experimental study on the influence of swirl number (S) and primary zone airflow rate on the temperature, emission indices of the pollutants, and combustion efficiency in an atmospheric pressure liquid-fueled gas turbine (GT) combustor, equipped with a swirling jet air blast atomizer and operated with Jet A1 fuel. Experiments were conducted at three primary zone air flow rates and three swirl numbers (0.49, 0.86, and 1.32). For all the cases, it was found that the NOx emissions were very low (< 2 g/kg of fuel). At all the swirl numbers, an increase in primary zone airflow led to a nonmonotonous variation in CO while minimally affecting the NOx emissions. However, increase in the swirl number generated relatively higher NOx and lower CO owing to higher temperature resulting from efficient combustion caused by a superior fuel–air mixing. Also, the unburnt hydrocarbons (UHC) was quite high at S = 0.49 because of the unmixedness of fuel and air, and zero at S = 0.86 and 1.32. The combustion efficiency was very low (around 60%) at S = 0.49 while almost 100% at S = 0.86 and 1.32. The study conducted demonstrates a significant dependence of emissions and GT performance on the swirl number governed by the convective time scales and the residence time of the combustible mixture in the combustion zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.