Abstract

The objectives of this study were: a) to determine E. coli O157:H7 survival on tomatoes and cardboard squares post-drying, stored at 25 ºC in humidified environment for four days, in buffered peptone water (BPW), and 0.1% diluted peptone (DP); b) to determine pathogen transfer rates (0, 1.5, or 24-hours drying post-inoculation), from inoculated tomato surfaces to uninoculated cardboard squares and conversely; and c) to evaluate SystemSure Plus ATP luminometer for recognizing contamination on visibly soiled (BPW) or visible clean (DP) cardboard. In tomato inoculation studies, E. coli O157:H7 survived better on the fruit when the inoculum was prepared using DP as compared to BPW. The 1.5-hours post drying counts of 5.34 and 5.76 log10 CFU.mL-1 in the rinsate substantially declined to 1.45 and 1.17 log10 CFU.mL-1 on day four, for DP and BPW, respectively. In cardboard inoculation studies, E. coli O157:H7 persisted for four days, with 1.5-hours post-drying counts and day four counts of 4.53 (DP) and 2.55 log10 CFU.mL-1 (BPW), contrary to 3.81 (DP) and 1.92 log10 CFU.mL-1 (BPW). Under the first impression, the slower die-off of E. coli O157:H7 on cardboard questions the possibility of reusing cardboard boxes due to the potential for cross-contamination. In wet transfer (0 hour drying) trials, both tomato-to-cardboard and cardboard-to-tomato yielded 100% positive transfers irrespective of diluent type. Dry transfer (1.5-hours drying interval post inoculation) from tomato-to-cardboard were 100% positive, but no positives were noted when inoculated, dried cardboard was contacted to tomatoes, irrespective of diluent. Results of transfers with BPW as the diluent showed 100% positive transfer from 24-hours dry tomatoes-to-cardboard, as inoculation spots on the tomatoes remained moist due to hygroscopic nature of solutes in BPW. Conversely, only a 40% positive transfer rate was observed under the same conditions with DP as diluent. No positive transfers were recorded from 24-hours dry cardboard-to-tomatoes, irrespective of diluent type. Though E. coli O157:H7 survived better on the surface of cardboard compared to the surface of tomatoes on day four, the dry transfers were more efficient from tomatoes-to-cardboard than conversely, possibly due to smooth and hydrophobic properties of the tomato, and rough and porous surface of the cardboard. ATP luciferase UltrasnapTM swab test showed 9/9 “pass” results for sterile liquid DP and BPW, while 9/9 “fail” results were observed with liquid peptone and BPW contaminated at ca. 9.0 log10 CFU.mL-1E. coli O157:H7. Cardboard squares treated and dried, with sterile DP, showed 8/9 “pass” ATP luciferase results, and 1/9 “warning”, while cardboard squares with contaminated DP showed 9/9 “fail” result. Cardboard squares treated and dried, with sterile BPW, showed 7/9 “pass” ATP luciferase results, and 2/9 “warning”, while cardboard squares with contaminated BPW showed 9/9 “fail” result. Luminometer can simplify detection of microbial load, as well as organic residues, helping to check cardboard boxes for cleanness.

Highlights

  • Tomatoes are important commodity, with the United States (US) an Ukraine among top-fifteen producers worldwide (FAOSTAT, 2017)

  • Inoculated spots with BPW liquefied at high humidity but were dry at low humidity on tomatoes after 24 hours, while spots with DP remained dry in either environment

  • Spots remained dry on cardboard squares regardless of diluent or humidity; spots of DP were untraceable by naked eye, while BPW spots were visible

Read more

Summary

Introduction

With the United States (US) an Ukraine among top-fifteen producers worldwide (FAOSTAT, 2017). The US is the fourth leading producer of tomatoes in the world, behind China, India, and Turkey (FAOSTAT, 2017). Fresh tomatoes are produced in every state, with commercial scale production in 20 states. 30,000 – 40,000 acres, accounting for almost one-third of total US fresh tomato acreage (FDACS, 2018). The food safety concerns associated with fresh tomatoes are related to absence of a terminal pathogen reduction step as tomatoes are often consumed fresh, not cooked (Gurtler et al, 2018). Tomatoes are generally contaminated with various groups of microorganisms from the environment (Tokarskyy and Korda, 2019). According to Beuchat and Ryu (1997), enteric pathogens can contaminate tomatoes through

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call