Abstract
While the operational conditions of a fluidized bed are known to influence the fuel axial mixing, the effect of the resulting axial location of the fuel particles on the char gasification rate remains unexplored. In this work, a laboratory-scale bubbling fluidized bed was used to investigate how the gasification rate of biomass char was influenced by the fuel axial location (during pyrolysis and char gasification), the pyrolysis atmosphere, the fuel size, and the fuel concentration. When pyrolysis at the bed surface was followed by char gasification inside the dense bed the char gasification rate was up to 2-fold lower than the other combinations of the fuel axial location, which held similar rates. Cooling the char after pyrolysis decreased the char gasification rate in all cases studied. The gasification rate increased when the fuel particle size was decreased, and its dependence on the degree of char conversion was also affected. Thus, the operational conditions of a fluidized bed reactor, through modified fuel axial mixing, can influence the char gasification rate. Furthermore, experimental determination of reactivity data in laboratory-scale systems must account for the axial location of the fuel at the desired end-scale, using similar fuel particle sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.