Abstract

The influence of continental topography on the initiation of a global glaciation (i.e., snowball Earth) is studied with both a fully coupled atmosphere–ocean general circulation model (AOGCM), CCSM3, and an atmospheric general circulation model (AGCM), CAM3 coupled to a slab ocean model. It is found that when the climate is very cold, snow cover over the central region of the Eurasian continent decreases when the atmospheric CO2 concentration ( pCO2) is reduced. In the coupled model, this constitutes a negative feedback due to the reduction of land surface albedo that counteracts the positive feedback due to sea ice expansion toward the equator. When the solar insolation is 94% of the present-day value, Earth enters a snowball state when pCO2 is ~35 ppmv. On the other hand, if the continents are assumed to be flat topographically (with the global mean elevation as in the more realistic present-day case), Earth enters a snowball state more easily at pCO2 = ~60 ppmv. Therefore, the presence of topography may increase the stability of Earth against descent into a snowball state. On the contrary, a snowball Earth is found to form much more easily when complex topography is present than when it is not in CAM3. This happens despite the fact that the mid- to high-latitude climate is much warmer (by ~10°C) when topography is present than when it is not. Analyses show that neglecting sea ice dynamics in this model prevents the warming anomaly in the mid- to high latitudes from being efficiently transmitted into the tropics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call