Abstract

The impressive photovoltaic performance of hybrid iodide CH3NH3PbI3 perovskite relies, among other factors, on the optimal alignment of the electronic energy levels of the semiconductor with respect to conventional hole transporting (HTM) and electron transporting (ETM) materials. Here, we first report on density functional theory electronic structure calculations of slab models of the (001) surface aiming to assess how the perovskite valence and conduction band edge (VBE and CBE) energies depend on the nature of the surface exposed to vacuum. We find that the surface termination plays a critical role in determining the energies of the frontier crystal orbitals, with PbI-terminated surface showing VBE and CBE energy ∼1 eV below the corresponding levels in the methylammonium-terminated surfaces. We next build perovskite/C60 interfaces based on two such surfaces and discuss the associated electronic structure in light of recent experimental data. The two interfaces are rather inert showing limited band bend...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call