Abstract
Surface roughness on a stator blade was found to have a major effect on the three-dimensional (3D) separation at the hub of a single-stage low-speed axial compressor. The change in the separation with roughness worsened performance of the stage. A preliminary study was carried out to ascertain which part of the stator suction surface and at what operating condition the flow is most sensitive to roughness. The results show that stage performance is extremely sensitive to surface roughness around the leading edge and peak-suction regions, particularly for flow rates corresponding to design and lower values. Surface flow visualization and exit loss measurements show that the size of the separation, in terms of spanwise and chordwise extent, is increased with roughness present. Roughness produced the large 3D separation at design flow coefficient that is found for smooth blades nearer to stall. A simple model to simulate the effect of roughness was developed and, when included in a 3D Navier-Stokes calculation method, was shown to give good qualitative agreement with measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.