Abstract

In the present study, a numerical simulation was conducted to investigate the influence of surface roughness on the aerodynamic performance of a 1.5-stage highly loaded axial compressor at low Reynolds number. It was especially considered how the roughness Reynolds number(k+) affected the change of the inlet and outlet conditions, the growth of the separation bubble (LSB), the status of the limiting streamline, the patterns of the wake. Regarding the roughness settings, five roughness magnitudes were mainly studied. The results showed that at low Re, surface roughness mainly improved the stage performance by reducing the length and width of the LSB, delaying the occurrence of three-dimensional flow separation, and increasing the turbulence level near the wall. However, it also aggravated the incoordination between the subsequent stages to a certain extent, which limited further improvement of the overall aerodynamic performance. Generally, with k+ increasing, the compressor aerodynamic performance improved, and achieved the best at k+= 137.8. The maximum increases in the total pressure ratio, peak efficiency, and chocked mass flow rate were approximately 4.01%, 5.34%, and 2.24% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call