Abstract

The most optimal candidate material for fabrication of Test Blanket Module (TBM) in the installation of ITER and future fusion reactors is Reduced Activation Ferritic Martensitic (RAFM) steel, yet one of the major challenges that need to be addressed with RAFM is minimizing the loss of tritium in a reactor environment through the formation of tritium permeation barrier. One of the most promising methods for the tritium permeation barrier is through duplex coating with Al2O3/Fe–Al which is well known to reduce tritium permeation rate by several orders of magnitude. The present work aims to form an alumina layer on RAFM steel by a two-step method, which consists of (i) Hot Dip Aluminizing (HDA) and (ii) conversion of Al into alumina by a subsequent oxidation process. In addition, the influence of surface roughness of the substrate, superheat condition of the Al alloy melt and its composition on microstructural properties of coating before and after oxidation were investigated using OM, SEM–EDS, XRD, indentation micro hardness and scratch test. The experimental results confirmed the formation of alumina layer on RAFM steel after the HDA and oxidation process. Moreover, the surface roughness of the substrate, melt superheat of Al alloy and its composition are found to have a significant influence on the microstructure, thickness, micro-hardness, nature of intermetallic compounds formed and adhesion strength of the coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.