Abstract
In this paper, we report on the early increase of the dc current gain (burn-in effect) due to the electrical stress of carbon doped GaInP/GaAs heterojunction bipolar transistors (HBTs). Devices featuring different passivation layers, base doping, and emitter widths were investigated. The obtained data demonstrate that the burn-in effect is due to a reduction of the surface recombination located at the extrinsic base surface, around the emitter perimeter. It is concluded that the recombination centers are related to defects at the passivation/semiconductor interface and that, during the stress, they are passivated by hydrogen atoms released from C-H complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.