Abstract

Degradable zinc-based alloys with an appropriate corrosion rate are promising materials for the preparation of temporary orthopaedic implants. Previously, we prepared and characterised a novel Zn1.5Mg alloy. This paper is focused on the characterisation of this alloy after a surface pre-treatment, which should mimic processes occurring in vivo.The samples of the Zn1.5Mg alloy were immersed in a simulated body fluid (SBF) at 37°C for 14days in order to form a protective layer of corrosion products. Thereafter, these samples were used for the corrosion rate determination, an indirect in vitro cytotoxicity test, as well as for a direct contact test and were compared with the non-treated samples. The protective layer was characterized by SEM and its chemical composition was determined by EDS and XPS analysis.The corrosion rate was significantly decreased after the pre-incubation. The protective layer of corrosion products was rich in Ca and P. The pre-incubated samples exhibited increased cytocompatibility in the indirect test (metabolic activity of L929 cells was above 70%) and we also observed osteoblast-like cell growth directly on the samples during the contact tests. Thus, the pre-incubation in SBF leading to improved cytocompatibility could represent more appropriate model to in vivo testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call