Abstract

In the method of nitriding elements, various methods of their thermal heating are used. The simplest heating method in ion-plasma nitriding is heating by bombarding the surface first with low-energy gas ions and then with metal ions with energies up to several kiloelectronvolt. Elements exposed to ion bombardment have a welldeveloped surface that is free from contaminants and facilitates the diffusion of nitrogen into the depth of the metal during nitriding. The paper studies the effect of various preliminary heating methods on the nitriding depth in the complex ion-plasma hardening technology of 25CrMoVA steel. A JSM 7000-1F scanning electron microscope equipped with an X-ray spectral energy dispersive microanalysis attachment was used to diagnose changes occurring on the surface of the samples and at depth; the hardness was measured using a Nanoindentor G200 device. The preliminary heating of the samples was carried out both with the use of bombardment with Ti or Mo ions, and without its direct effect on the heated surface. In the experiment, differences in the depth of hardening of the nitrided layer of steel are observed when it is heated in different ways. When bombarded with Mo ions, the greatest depths of hardening were obtained in comparison with other preliminary heating conditions. It is shown that these differences are associated with the features of the morphology of the steel surface formed as a result of sputtering processes. The formation of nitride compounds in its surface layer can serve as a barrier that slows down the penetration of nitrogen into the metal. It is shown that with complex treatment in the process of deposition of a nitride coating on the surface of nitrided steel, an additional increase in the depth of hardening of the nitrided layer occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call