Abstract

The influence of the surface plasmon of gold nanoparticles on the optical properties of the fluorescent nanoparticles in aqueous solution have been investigated. The fluorescence of nanoparticles can be enhanced or quenched in the presence of gold nanoparticles depending on the domination of energy transfer mechanisms: radiating surface plasmon coupling emission or F\"{o}rster energy transfer from fluorescent particles to gold particles, which exciting absorbing plasmon. The fluorescence enhancement or quenching is attributed to the increase or decrease of radiative recombination rates, respectively. The parameters of the energy transfer between fluorescent nanoparticles (dye molecules encapsulated in silica nanoparticles) and nano golds have been estimated. The results show that the interactions between nanoparticles depend on the size of both fluorophores (as donors) and gold nanoparticles (as acceptors).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.