Abstract

We investigated how the surface hierarchy of superhydrophobic (SHPo) surfaces influences liquid slip by testing well-defined microposts that have nanoposts only on their top. Contrary to the commonly held belief, our results show that such hierarchical surfaces do not always lead to an increase of slip length despite their reduced solid fraction and enhanced hydrophobicity compared to single-scale surfaces. Adding nanoposts on top of the microposts resulted in an increase of slip length only if the original microposts had a solid fraction above a threshold value. For solid fractions below this threshold, adding nanoposts decreased the slip length. We propose that there were not enough nanoposts on the top surface of very thin microposts to support the liquid pressure, allowing the liquid to intrude down to the top corners of the microposts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.