Abstract

We have studied the electron-transfer photochromism of the crystalline adducts of 4,4′-bipyridine (Bpy) and carboxylic acids and revealed the key structural parameters that decide whether the photochromism can happen for the first time. Experimental and theoretical analyses on nine known examples showed that the hydrogen bonds, instead of π–π stacking interactions, are the defining factor to the photochromism. Only the presence of N–H···O hydrogen bonds can fulfill the electron transfer from the carboxylate group to the Bpy part, although both the N···O separations of O–H···N and N–H···O hydrogen bonds are suitable for the so-called through-space electron transfer. These results can not only help to screen out the photochromic species from the known hundreds of Bpy–carboxylic acid adducts deposited in the Cambridge Crystallographic Data Centre (CCDC) database but also guide the design and syntheses of new adducts using diverse N-heterocyclic aromatic molecules and carboxylic acids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.