Abstract

In order to manage the impaired wound healing of diabetic chronic wounds induced by high-glucose-damaged endothelial cells, a glucose-induced injured endothelial cell model is established in this research to explore the regulatory effects of a supramolecular chiral hydrogel on injured endothelial cells. Cellular behaviors of endothelial cells under different culture conditions are evaluated by CCK-8, 5-ethynyl-2′-deoxyuridine (EdU) staining, adhesion, and Transwell assays. The expression levels of angiogenesis-related markers, including nitric oxide, endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF), are also assessed by enzyme-linked immune sorbent assay (ELISA) and the polymerase chain reaction (PCR). The results demonstrate that the left-handed chirality of the supramolecular chiral hydrogel can promote cell proliferation and enhance the adhesion and migration ability of impaired endothelial cells. Moreover, enhanced nitric oxide synthesis and elevated expression of eNOS and VEGF are observed in cells in the left-handed chiral environment. Thus, the left-handed supramolecular chiral hydrogel can regulate the cellular behavior of high-glucose-injured endothelial cells, including cell proliferation, adhesion, migration, and angiogenesis, offering the potential to promote diabetic wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call