Abstract

Sulfur content and sulfide shape are known to have a marked influence on the tensile ductility and notch toughness of plate steels. To investigate the initiation and growth of fractures at inclusions during plastic straining, a detailed study was conducted with a series of 0.1 and 0.2 pct carbon, 1.0 pct manganese steels containing either 0.004 or 0.013 pct sulfur with and without rare-earth additions. This paper describes the results of this study and evaluates the influence of sulfur content and sulfide shape on the anisotropy in tensile ductility and notch toughness in the steels and assesses the influence of other factors, such as pearlite content, affecting the ductility and toughness. Both globular and stringered sulfide inclusions had a detrimental effect on reduction of area, shelf energy, and transition temperature, which was particularly evident in deterioration of through-thickness properties and which was much more severe for stringered inclusions than for globular inclusions. Increased pearlite content was more detrimental to reduction of area and transition temperature when stringered inclusions were also present, whereas its effect on shelf energy appeared to be about the same regardless of the presence of inclusions or their morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call