Abstract

The hydration of C3A-gypsum systems was studied in the presence of various types of sulfates such as gypsum, hemihydrate and Na2SO4 in the first hour. The BET method combined with a DSC analysis enabled us to quantitatively characterize the amount of precipitated ettringite and its specific surface area along the hydration. It was found that sulfates not only affected the formation rate of ettringite, but also had a significant impact on the morphology of ettringite. For all the C3A-gypsum systems, a large part of the ettringite precipitated within the first 20 min and the specific surface area of the hydrated sample strongly increased within the first 5 min, whereas the specific surface area of ettringite gradually decreased along the C3A hydration reaction. Incorporating a small amount of Na2SO4 in the C3A-gypsum system could greatly promote the formation rate of ettringite in the first 20 min, and significantly decrease the specific surface area of ettringite. As hemihydrate was added to the C3A-gypsum system, two processes of ettringite precipitation and gypsum precipitation occurred. The nucleation and growth process of ettringite and gypsum resulted in the complex changes in the specific surface area of the hydrated sample, which first increased at the very beginning, then decreased and, finally, increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call