Abstract

As a toxic heavy metal, cadmium (Cd) easily enters into rice while rice grains greatly contribute to the dietary Cd intake in the populations consuming rice as a staple food. The availability of Cd in paddy soil determines the accumulation of grain Cd. Soil drainage leads to the remobilization of Cd, increasing bioavailability of Cd. In contrast, soil flooding results in little contribution of soil Cd to grain Cd, which is generally attributed to sulfate reduction induced by sulfate-reducing bacteria (SRB) in paddy soils. However, effects of SRB cultured from the paddy soil on the solubility and redox behavior of Cd have been seldom investigated before. Here, we used SRB enrichment cultures to investigate the temporal dynamics of Cd2+. The results showed that SRB enrichment cultures efficiently reduced solution redox potential (Eh) to less than −100 mV and gradually increased pH to neutral, demonstrating their ability to create a good anaerobic environment. The solubility of Cd obviously decreased in the anaerobic phase and Cd2+ was transformed into poorly dissolved CdS near the SRB cell wall edge. The addition of Zn2+ and/or Fe2+ further improved the decrease in Cd solubility and facilitated the formation of polymetallic sulfides as a consequence of promoting the production of S0 and dissolved sulfides (S2−/HS−) and the transformation of S0 into S2−/HS−. Little of Cd was detected in the media upon reoxidation, which was probably due to the high pH and the interaction between CdS and ZnS/FeS. Conclusively, these results demonstrate the detailed dynamic processes that explain the essential role of SRB in regulating the redox dynamics of chalcophile heavy metals and their bioavailability in paddy soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.