Abstract

High critical current densities can be realized in high-temperature superconductors, such as YBa 2 Cu 3 O 7-δ (YBCO), by controlling the density, shape, size, and direction of a secondary phase. Whereas the dependence on the growth rate and deposition temperature has been widely studied as key parameters for nano-engineering the pinning landscape, the vicinal tilt of the substrate surface might have an additional influence. Therefore, we deposited 6 mol% BaHfO 3 (BHO)-doped YBCO on SrTiO 3 (STO) substrates with vicinal angles α between 0° and 40° to identify the influence of the tilt on the growth mode of BHO. An undisturbed epitaxial growth of the superconductor as well as an epitaxial integration of the BHO phase in the YBCO matrix is observed for all vicinal angles investigated. The critical temperature is constant up to α = 20°, whereas the self-field critical current density at 77 K starts to decrease above 10°. A detailed structural analysis of the film cross sections showed that the growth mode of BHO changes already for a vicinal tilt of 2° from a pure c-axis oriented growth to a layered structure with BHO aligned parallel to the YBCO ab-plane. We identified a strong influence of such a microstructure on the current flow in BHO-doped YBCO films on STO substrates as well as on MgO-based coated conductors prepared by inclined substrate deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.