Abstract

The influence of the substrate structure on the catalytic properties of penicillin G acylase (PGA) from Escherichia coli in kinetically controlled acylations has been studied. In particular, the affinity of different β-lactam nuclei towards the active site has been evaluated considering the ratio between the rate of synthesis (v s ) and the rate of hydrolysis of the acylating ester (v h 1 ). 7-Aminocephalosporanic acid (7-ACA) and 7-amino-3-(1-sulfomethyl-1,2,3,4-tetrazol-5-yl)thiomethyl-3-cephem-4-carboxylic acid (7-SACA) showed a good affinity for the active centre of PGA. The enzymatic acylation of these nuclei with R-methyl mandelate has been studied in order to evaluate different approaches for the enzymatic synthesis of cefonicid. The best results have been obtained in the acylation of 7-SACA. Cefonicid (8) was recovered from the reaction mixture as the disodium salt in 65% yield and about 95% of purity. Furthermore, through acylation of 7-ACA, a one-pot chemo-enzymatic synthesis was carried out starting from cephalosporin C using three enzymes in sequence: D-amino acid oxidase (DAO), glutaryl acylase (GA) and PGA. Cefonicid disodium salt was obtained in three steps, avoiding any intermediate purification, in 35% overall yield and about 94% purity. This approach presents several advantages compared with the classical chemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.