Abstract

This study investigates the microstructure and tribological behavior of Inconel 625 overlays applied via GMAW (Gas Metal Arc Welding) with and without a 316LSi stainless-steel intermediate layer on top of A36 steel. The microstructural characterization was conducted via FESEM with EDS. The tribological behavior was evaluated using a tribometer in a reciprocating configuration. The results showed that the wear rate of the Inconel 625 weld overlay with the 316LSi intermediate layer was higher than without it. However, no variations were observed in terms of hardness and the friction coefficient of the Inconel 625 weld overlays. The difference in the behavior of the two coatings was justified due to the microstructure morphology found in each case and chemical composition. When applied without the intermediate layer, Inconel 625 coating’s structure was dendritic, whereas it was cellular otherwise. An increase in the amount of Nb was observed in the layer deposited over 316LSi. This rise likely led to an increase in the number of precipitates and/or Laves phase formation. Thus, the results indicated that the difference in thermal conductivity and dilution between the stainless and carbon steels modifies the morphology of the microstructure of the Inconel 625 weld overlay, decreasing wear resistance when deposited on top of the stainless steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call