Abstract

The objective of this research is to evaluate the effects of the hole geometry and the spatter area around the drilled hole by femtosecond laser deep drilling on silicon with various temperatures. Deep through holes were produced on single crystal silicon wafer femtosecond laser at elevated temperatures ranging from 300 K to 873 K in a step of 100 K. The laser drilling efficiency is increased by 56% when the temperature is elevated from 300 K to 873 K. The spatter area is found to continuously decrease with increasing substrate temperature. The reason for such changes is discussed based on the enhanced laser energy absorption at the elevated temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.