Abstract

The ZrN films were grown on Si (100) substrates using dc magnetron sputtering where the substrate bias was varied from −45to50V. In this article, the film/substrate practical adhesion of the ZrN films were measured by scratch testing while the hardness, elastic modulus, and fracture toughness were measured by nanoindentation. The structures and morphologies of the ZrN films were analyzed using scanning electron microscopy, atomic force microscopy, and x-ray diffraction. The results indicate that the introduction of either negative or positive bias results in the degradation of the practical adhesion properties, while the films under zero bias exhibit the best adhesion. In addition, positive bias results in the increase in both the hardness and elastic modulus, while negative bias enhances the hardness and toughness of the ZrN thin films. The mechanical properties are greatly influenced by substrate bias and can be correlated to microstructure variations. The detailed mechanisms accounted for these phenomena are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call