Abstract

The influence of structure complexity of phenolic compounds on their binding with maize starch was investigated. The computational results (including molecular electrostatic potential and molecular dynamics simulation) indicated that protocatechuic acid, ellagic acid, naringin and tannic acid could bind with maize starch by hydrogen bonds, while the number and distribution of hydroxyl groups in phenolic compounds significantly affected the binding affinity and combination conformation. Furthermore, the microstructure, particle size, crystallinity and thermal stability of maize starch were both changed obviously through the binding with phenolic compounds, and the binding effect was more obvious induced by phenolic compounds with larger molecular size and bigger steric hindrance. All present results suggested that the amount of hydroxyl groups, molecular size and steric hindrance of phenolic compounds could affect their binding effects on starch molecules, so as to modify the structure and properties of maize starch in different degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call