Abstract

Recent progress in the development of 1.3 mm InAs/InGaAs/GaAs dots-in-a-well (DWELL) laser structures has led to efficient CW room temperature laser operation with low current thresholds. However, present devices suffer from non-ideal temperature characteristics due to gain saturation, consequence of the finite dot density and carrier escape due to the small energy separation between the quantum dot (QD) ground and first-excited states. In order to improve device performance, we have examined methods to increase the QD quality and density. In these studies, we have examined the effect of different growth parameters which strongly modify the InAs QDs structure such as temperature and thickness of barrier layers and thickness and composition of the well. Analysis by Transmission Electron Microscopy (TEM), Photoluminescence (PL) and atomic force microscopy (AFM) have identified the presence of defects arising from the complex interaction of QDs, which propagate through the structure into the upper regions being the primary cause of the poor electronic device characteristics. The use of optimized growth has allowed, however, the fabrication of a defect free five layer-stacked structure with record low threshold current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.