Abstract

We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.