Abstract
Oleic acid-capped CdSe/ZnS quantum dots (QDs) were used to investigate their photoluminescence (PL) response to Hg2+ ions as a function of the surface properties of QDs. Three distinctly-size CdSe/ZnS QDs were obtained by varying the molar ratio of shell precursors, which were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier-Transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), absorption spectroscopy, and time-resolved fluorescence spectroscopy. Results revealed the obtention of zinc blende nanocrystals with sizes ranging from 2.7 to 3.2nm (± 0.5) and ZnS thickness between 0.3 and 1.0 monolayer (ML). The variation of the [S]/[Zn] molar ratio introduced chemical species that act as traps, affecting the PL properties differently. Depending on the thickness of the shell and chemical speciation on surface, Hg2+ ions could induce quenching or enhancement of PL. Detection of mercury ions was evaluated in terms of Stern-Volmer equation, where the limit of detection (LOD) for the PL quenching system was 11.2 nM, while for the PL enhancing systems were 8.98 nM and 10.7 nM. Results demonstrate the performance of oleic acid-capped CdSe/ZnS QDs to detect Hg2+ and their capacity to turn the PL on/off depending on surface properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.