Abstract

The storage stability of compounds encapsulated in emulsions is strongly influenced by the properties of the droplet interfacial membrane. To evaluate the effect of emulsion droplet interface thickness on the degradation of citral, emulsions were prepared using polyoxyethylene alkyl ether-type emulsifiers with hydrophilic and hydrophobic groups of various sizes. Acid cyclization of citral at pH 3 promoted faster degradation than that at pH 7. Ferrous irons accelerated citral degradation in the emulsions at pH 3 but not at pH 7, because they decomposed the products of the acid-catalyzed cyclization of citral through redox reactions rather than direct degradation. Water-soluble radicals dramatically increased the rate of citral degradation, irrespective of pH. Notably, at low pH, the rate of citral degradation by ferrous irons was higher than that by radicals. These findings suggest that the thickness and density of emulsion droplet surfaces are not important factors for inhibiting citral degradation in emulsions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.