Abstract

In order to better understand the dependence of charge recombination rate vs. temperaturek CR(T) within a linear donor-chromophore-acceptor (D-C-A) molecular triad, the structural dynamics of the cation radical D+-C is studied individually using variable-temperature electron paramagnetic resonance (EPR) spectroscopy and electronic structure calculations. Here, the donor D isp-methoxyaniline, the chromophore C is 4-(N-piperidinyl)-naphthalene-1,8-dicarboximide, and the acceptor A is naphthalene-1,8∶4,5-bis(dicarboximide). The EPR spectra of D+-C exhibit marked changes in their overall shape throughout the 190–295 K temperature range. These spectra have hyperfine splittings that are strikingly well simulated with a model that includes methoxy group rotation, which occurs at a rate of 2.6 · 104 s−1 at 210 K and speeds up to 1.25 · 107 s−1 at 295 K, corresponding to an energy barrier of 38 kJ/mol. This considerable barrier reflects the partial conjugation between MeO and the aromatic ring and is confirmed by the calculated energy of a series of D+ ·-C rotamers. The simulations also reveal that inversion of the anilino N center emerges atT > 250 K and can be represented by a planar and a pyramidal conformation with the equilibrium constantK = [pyramidal]/[planar] increasing from 0.029 at 250 K to 0.56 at 295 K. In the same temperature range, the charge recombination rate of D+ ·-C-A− · accelerates abruptly and can be separated into two components, according to the above planar/pyramidal equilibrium. Thek CR (T) of the pyramidal conformation has an activation energy of 41 kJ/mol, virtually the same as the barrier of MeO rotation. These results show that the intramolecular structural dynamics of the radical cation within D+·-C-A− · control the overall charge recombination reaction with this radical ion pair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call