Abstract

Model tests in ice have been conducted at the Large Ice Basin of HSVA with cylindrical and conical, compliant structures exposed to drifting level ice to investigate the influence of slope and compliance on the ice load and its breaking frequency. Main goal of the test campaign was to study the importance of structural feedback during ice-cone interaction. This is a major issue e.g. for numerical simulation of offshore structures during design phase. Four shapes were tested: 50°, 60°, 80° and 90° slope angle. The cylinder was tested in order to define the worst case scenario regarding magnitude of ice load and severity of ice-induced vibrations. Stiffness and natural frequency of the structure were chosen similar to typical values for offshore wind turbine support structures. All shapes were tested both in a compliant and fixed configuration. The breaking frequency was found to be more pronounced for the lower slope angles where the ice failed in flexural failure only, while a transition to crushing failure as observed on a cylindrical structure takes place at 80° cone angle already. This results in significantly higher ice loads on the 80° cone than on those with lower angles, but a reduced risk of severe ice-structure interaction due to the unsteady nature of the mixed mode breaking process. Although the breaking frequency is rather constant e.g. during ice impact on the 60° cone, it was not possible during the model tests to match the ice drift speed and the dynamics of the structure in a way that causes resonance. However, model test results prove that there is a risk of conical structures with low natural frequencies and low stiffness in ice plane being excited by periodic ice failure in their natural frequency, thus response amplification may take place and pose a risk to the structural integrity of conical offshore structures exposed to sea ice. This paper presents the model test setup, analysis of the results, and general findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.