Abstract

2H NMR spectroscopy, multiquanta relaxation, and spin-locking relaxometry are used to investigate the structural and dynamical properties of water molecules confined within dense sediments of synthetic fluorohectorite. As shown by the large residual splitting of the 2H NMR resonance line, water molecules confined in the interlamellar space of the clay are strongly oriented to contact with the fluorinated basal surface of the clay. Multiquanta relaxation measurements are used to identify and quantify the contributions of the quadrupolar and heteronuclear dipolar couplings by monitoring the NMR relaxation of the confined water molecules. Finally, the average residence time of the water molecules confined within the interlamellar space of the clay platelets is quantified by detailed analysis of 2H spin-locking relaxometry measurements. Thanks to the significant contributions of both quadripolar and heteronuclear dipolar relaxation mechanisms, 2H spin-locking relaxation measurements probe a broad dynamical range, by sampling angular velocities ranging between 102 and 3 × 105 rad/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.