Abstract

The structural evolution of interfacial dislocation networks in a Ni‐based single crystal superalloy under various stress states was simulated by molecular dynamics (MD). From the simulation, we found that the dislocation network exhibits different deformation and damage mechanisms under various stress states. The square dislocation network at the (100) phase interface is the easiest to damage under a [100] uniaxial load, but more difficult to damage when multi‐axial loads are applied. This suggests that the application of a [100] direction axial load is the key factor for the damage of the square dislocation network, which leads to failure of the Ni‐based single crystal superalloy under the [100] axial centrifugal load. Moreover, based on MD simulations, the effects of the stress state on γ′ rafting were explored. The results indicate that the morphology of γ′ raft depends on the damage structures of the dislocation network under various stress states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.