Abstract

Unsaturated soils are generally near the ground surface and are commonly overconsolidated due to environmental effects. The stress state variables for an unsaturated, in situ profile consist of the net total stress, (σ - ua), and matric suction, (ua - uw), where σ is the total stress (in three directions), ua is the pore-air pressure, and uw is the pore-water pressure. These stress state variables control the behavior of the unsaturated soil. A total stress ratio, TSR, was used in this study as a measure of the stress history. The total stress ratio is defined as the ratio of the compaction pressure to the current confining pressure. Shear tests were conducted using a modified direct shear apparatus on a statically compacted unsaturated soil subjected to various total stress ratios with controlled matric suction. The shear strength parameters (i.e., ϕ', ϕb, and c') for an unsaturated soil were measured using the modified direct shear apparatus. The total stress ratio influences the shear strength parameter ϕb of a compacted soil. The shear strength parameter ϕb decreases with matric suction regardless of the loading history. For a compacted soil with a total stress ratio of 1.0, ϕb was higher than that for the soil tested at a total stress ratio greater than 1.0, regardless of increase in matric suction, and was shown to be influenced by loading history.Key words: unsaturated soil, shear strength, stress history, compacted soil, direct shear test, matric suction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call