Abstract

This work presents an analysis of the influence of stress anisotropy on cylindrical cavity expansions in an undrained elastic-perfectly plastic soil. This problem was formulated by assuming a large strain in both the elastic and plastic zones around the cavity and a plain strain condition during the cavity expansion process. The solutions for the limit pressure, stress, and excess pore pressure were obtained by introducing the anisotropic initial stress coefficient K 0 into the conventional cylindrical cavity expansion method. The proposed solutions were then used to interpret the piezocone penetration test, and the suitability of the solutions was verified by comparing the prediction with the piezocone penetration test data. Subsequently, parametric studies were carried out to investigate the influence of stress anisotropy on the stress, excess pores pressure distributions around an expanding cylindrical cavity, and limit pressure. The results show that the proposed cylindrical cavity expansion method under stress anisotropy is suitable and can be used to investigate the piezocone cone test. The present work improves upon the conventional theoretical framework of cavity expansion and can be applied to the determination of the stresses around axially loaded piles and around in - situ testing devices such as penetrometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call