Abstract

The behaviour of gap graded soils comprising non-plastic fines (sand or silt) mixed with a coarser sand or gravel fraction has received attention from researchers interested in internal instability under seepage loading (a form of internal erosion) as well as researchers interested in load:deformation responses. Skempton and Brogan [1] postulated that resistance to seepage induced instability depends upon the proportion of the overall applied stress that is transmitted by the finer fraction. Shire et al. [2] explored Skempton and Brogan’s hypothesis using DEM simulations to look at the proportion of the applied stress transmitted by the finer fractions (α) in ideal isotropic samples. They showed that at low fines contents (FC< FC*) the average stress transmitted by the finer grains is less than the applied stress (α<1), while for FC>FC+ the fines play a key role in stress transmission (α>1); for FC*<FC< FC+, α depends on the sample density. The current contribution describes a series of constant p’ DEM triaxial test simulations carried out to assess the evolution of stress heterogeneity with shearing. The simulation data generated indicate that a sample can transition from being fines dominated (with the fines transmitting a significant proportion of the applied stress and α ≥1) to coarse or sand- dominated (with α <1) as the material dilates during shear deformation. While α reduces as the samples dilate, the relationship between the α and the sample void ratio is non-trivial. The anisotropy of the coarse-coarse contact network exceeds the overall contact force anisotropy; this indicates that the deviator stress is transmitted through a strong force network passing through the coarse-coarse contacts supported by the fine-coarse contacts.

Highlights

  • As outlined by Zuo and Baudet [3] the influence of the fines content (FC) on the behaviour of gap-graded soils containing non-plastic fines has attracted interest from researchers considering load:deformation response as well as researchers considering seepage-induced internal instability or suffusion (e.g. Skempton and Brogan [1]Amongst researchers considering the influence of FC on load:deformation response, it is accepted that there is a transitional fines content, FCt, that demarks the boundary between materials whose behaviour is dominated by the coarser fraction (“sand dominated”) and materials whose behaviour is dominated by the finer fraction (“fines dominated”) (Zuo and Baudet [3])

  • Skempton and Brogan [1] considered the resistance of gap graded soils to internal instability, i.e. the preferential erosion of the finer grains at hydraulic gradients lower than the Terzaghi critical hydraulic gradient (ii ≈ 1)

  • Skempton and Brogan [1] inferred the proportion of the applied stress carried by the finer grains ( ) by considering the hydraulic gradient that induced fines migration in their rigid wall permeameter experiments

Read more

Summary

Background

As outlined by Zuo and Baudet [3] the influence of the fines content (FC) on the behaviour of gap-graded soils containing non-plastic fines has attracted interest from researchers considering load:deformation response as well as researchers considering seepage-induced internal instability or suffusion For an underfilled material (sand dominated) while ≥ 1 implies an overfilled material (fines dominated) For their DEM simulations, Shire et al [2] directly calculated by considering the contact forces and showed that for FC*

Simulation approach
Evolution of stress inhomogeneity
Evolution of fabric anisotropy
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call