Abstract

Transportation cost is stepping the world into bio-feedstocks to power the Direct Injection Compression Ignition (DiCI) engines. Biodiesel makes a better alternative to diesel. In this research, tamarind seed biodiesel (TSB), is mixed 20% with diesel, with the injection pressure (IP) and timings (IT) modifications examining the engine’s performance, combustion, and emission aspects. The experimented IPs were 180 bar and 240 bar. The ITs were experimented with at 19° bTDC and 27° bTDC respectively. Modifying the IT to 27° bTDC, elongates the combustion period as well as the heat release rate (HRR) of the experiments which increases the emission of NOx in both the IPs (180 and 240 bar) compared with the diesel. Increase in NOx emissions parallelly projected the unburnt hydrocarbon emissions. Although, injecting the fuel 19° bTDC, shrank NOx emission owing to reduced HRR and peak in-cylinder pressures. However, increase in the IP to 240 bar is the predominant factor for the decrease in the emission of NOx and unburnt hydrocarbons, because of the increased fuel viscosity for the TSB. Increased atomization enhances the chemical delay which on other hand decreases the carbon monoxide. Hence fuel injected, 19° bTDC performed better with the reduced GHG emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call