Abstract

In prestressed concrete (PC) bridges, high-strength prestressing steel plays a key role in the flexural response of girders. In both pre-stressed and post-tensioned PC bridge girders, damage induced by corrosion or impact of under-passing high vehicles may led to rupture of one or more strands, significantly affecting the load-carrying capacity against dead and traffic loads. This paper presents an experimental study on the response of PC girders affected by strand rupture at different locations. Four reduced-scale post-tensioned concrete girders with different levels of initial prestressing force were tested under four-point bending. Two specimens with a different level of prestress were initially tested in undamaged configuration to provide a basis for the assessment of damage effects. The other pair of specimens were intentionally damaged - having the same initial prestressing level of their undamaged counterparts - in the lower tendon to investigate their limited flexural response under different performance levels including serviceability and collapse. Damage turned into a different critical cross section outside the loading region, i.e. both cracking and collapse were attained 1.1m away from midspan. In the last section of the paper, a cross sectional analysis of the girder was developed at cracking and ultimate conditions for the prediction of damage impact on failure mechanisms, thus validating the experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call