Abstract

The nature of hydrodynamically induced particle collisions in orthokinetic coagulation is examined. For a discrete region of fluid that is exposed to linear velocity-gradients, the frequency of collisions between particles is shown to be a function of the strain rates acting on the volume element of fluid containing the particles. Through transformation of the strain-rate tensor by diagonalization into principal components, a new scalar value is obtained that accurately estimates the total collision rate. This value, the \Iabsolute maximum principal strain-rate\N, is used in conjunction with a new collision-frequency function derived for the normal strain rates to yield an accurate relation for orthokinetic coagulation. The new method is contrasted with estimates of a global average velocity-gradient based on energy dissipation and power input to the fluid system. It is also shown that the square root of the dissipation function is not directly proportional to the velocity-gradient and that a global average of the energy dissipation function does not represent a mean-square velocity-gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.