Abstract

The influence of strain on lasing performances of Al-free strained-layer Ga(In)As(P)-GaInAsP-GaInP quantum-well lasers is investigated for the first time over a large emission range of 0.78</spl lambda/<1.1 /spl mu/m. GaAsP and InGaAs are used for tensile and compressive-strained quantum-well layers, respectively, while GaAs and GaInAsP lattice-matched to GaAs are applied for unstrained quantum wells. The laser structures were prepared by using gas-source molecular beam epitaxy, and broad-area and ridge waveguide Fabry-Perot laser diodes were fabricated. This study shows that applying both tensile and compressive strains in the quantum well reduces threshold current density for the Al-free strained-layer quantum-well lasers. However, it was found that the lattice relaxation set a limitation of maximum compressive strain (i.e., maximum lasing wavelength) for the compressive strained InGaAs lasers while the carrier confinement determined the acceptable maximum tensile strain (i.e., minimum lasing wavelength) and lasing performances for the tensile strained GaAsP lasers. Threshold current density as low as 164 A/cm/sup 2/ has been obtained for 1.4% compressive-strained InGaAs-GaInAsP-GaInP lasers having a 12-nm thick quantum well. However, excellent characteristics, such as low threshold current, high efficiency low internal loss, and high output power, have been achieved for the Al-free strained-layer quantum-well lasers.<<ETX>>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call