Abstract

In this work, 1050 aluminum (Al) sheets were annealed and severely deformed by 1, 2, and 3 passes of constrained groove pressing process to obtain the various initial stored strain values of 0, 1.16, 2.32, and 3.48, respectively. Friction stir processing (FSP) was then applied using SiC nanoparticles to fabricate Al/SiC nanocomposite with approximately 1.5 vol pct reinforced particles. Microstructural examinations revealed that an increase in the initial stored strain of the base metal led to the formation of finer grain structure after 1 pass of FSP. The finer grain structure occurred in the stir zone where a sufficient amount of nanoparticles with a relatively proper distribution existed. However, the initial stored strain value had a contrary influence in the regions with low volume fraction of nanoparticles. In fact, more stored strain in the base metal provided more driving force for both nucleation and grain growth of newly recrystallized grains at the stir zone. Pinning effect of well-distributed nanoparticles could effectively retard grain growth leading to the formation of very fine grain structure. Also it was observed that the initial stored strain values did not have impressive rule in the microstructural evolutions at the stir zone during the second and third FSP passes signifying that all of the stored energy in the base metal would be released after 1 pass of FSP. The results obtained with microhardness measurement at the stir zone were fairly in agreement with those achieved by the microstructure assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.