Abstract

In this paper, the behaviour of a soil-foundation system supported on a stone column-reinforced liquefiable soil strata is investigated through finite element analysis. The numerical analyses are performed on a five story reinforced concrete moment resisting building supported on a raft foundation. The influence of stone column slenderness ratio on liquefaction mitigation is studied by varying the length of stone columns at a constant area replacement ratio. The results are obtained based on the excess pore pressure, free-field soil settlement, foundation settlement, acceleration response, superstructure's inter-story drift, and lateral story displacement for each ground motion. The results showed that the liquefaction of free-field soil had a major impact on the foundation settlement and building lateral deformation. With the inclusion of stone columns, excess pore pressure ratio in the free-field region reduced considerably, which had immediate effects on the building's lateral deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.