Abstract

Angus-cross steers (n = 144; 362 kg ± 20.4) were used to determine the effect of Zn and steroidal implants on performance, trace mineral status, circulating metabolites, and transcriptional changes occurring in skeletal muscle. Steers (n = 6 per pen) were stratified by body weight (BW) in a 3 × 2 factorial. GrowSafe bunks recorded individual feed intake (steer as experimental unit; n = 24 per treatment). Dietary treatments (ZINC; eight pens per treatment) included supplemental Zn as ZnSO4 at 1) 0 (analyzed 54mg Zn/kg DM; Zn0); 2) 30mg/kg DM (Zn30); 3) 100mg Zn/kg DM (Zn100). After 60 d of Zn treatment, steers received a steroidal implant treatment (IMP) on day 0: 1) no implant; NO; or 2) high-potency combination implant (TE-200, Elanco, Greenfield, IN; 200mg TBA, 20mg E2; TE200). BWs were taken at days -60, 0, and in 28 d increments thereafter. Liver biopsies for TM analysis and blood for TM, serum glucose, insulin, nonesterified fatty acids (NEFA), urea-N, and IGF-1 analysis were collected on days 0, 20, 40, and 84. Glucose, NEFA, and insulin were used to calculate the revised quantitative insulin sensitivity check index (RQUICKI). Linear and quadratic effects of ZINC were evaluated in SAS 9.4. Means for IMP were separated using the LSMEANS statement with the PDIFF option. Day -60 BW was a covariate for performance and carcass data. Growth performance, plasma, liver, and metabolite data were analyzed as repeated measures. TE200 tended to decrease plasma Zn by 8.4% from days 0 to 20 while NO decreased by 3.6% (IMP × day; P = 0.08). A tendency for a ZINC × day effect on G:F was noted (P = 0.06) driven by Zn30 and Zn100 decreasing significantly from period 0-28 to period 28-56 while Zn0 was similar in both periods. An IMP × day effect was noted for RQUICKI where (P = 0.02) TE200 was greater on day 40 compared to NO cattle, but by day 84 RQUICKI was not different between TE200 and NO. On day 20, increasing Zn supplementation linearly increased mRNA abundance (P ≤ 0.09) of protein kinase B (AKT1), mammalian target of rapamycin (mTOR), matrix metalloproteinase 2 (MMP2), and myogenic factor 5 (MYF5). In this study, Zn and implants differentially affected genes related to energy metabolism, satellite cell function, and TM homeostasis on days 20 and 84 postimplant. These results suggest steroidal implants increase demand for Zn immediately following implant administration to support growth and may influence insulin sensitivity in finishing cattle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call